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Abstract

Correlations between community-weighted mean (CWM) traits and environmental gradients are
often assumed to quantify the adaptive value of traits. We tested this assumption by comparing
these correlations with models of survival probability using 46 perennial species from long-term
permanent plots in pine forests of Arizona. Survival was modelled as a function of trait 9 envi-
ronment interactions, plant size, climatic variation and neighbourhood competition. The effect of
traits on survival depended on the environmental conditions, but the two statistical approaches
were inconsistent. For example, CWM-specific leaf area (SLA) and soil fertility were uncorrelated.
However, survival was highest for species with low SLA in infertile soil, a result which agreed
with expectations derived from the physiological trade-off underpinning leaf economic theory.
CWM trait–environment relationships were unreliable estimates of how traits affected survival,
and should only be used in predictive models when there is empirical support for an evolutionary
trade-off that affects vital rates.
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INTRODUCTION

The search for phenotypic traits that explain species interac-
tions and compositional turnover along environmental gradi-
ents is a major research priority because quantifying the
adaptive value of traits will increase the generality of our
understanding of species coexistence and responses to global
change (HilleRisLambers et al. 2012; Adler et al. 2013; Kraft
et al. 2015b). Functional traits are heritable properties that
influence organism fitness, but their effect on fitness will
depend on the environmental context because variation in
traits is underpinned by evolutionary trade-offs (Grime 2001).
There are two common approaches for quantifying the fitness
of a phenotype. The ‘likelihood’ approach assesses the corre-
lation between community-weighted mean (CWM) traits (av-
erage traits weighted by species abundances) and
environmental gradients (Ackerly 2003; Shipley et al. 2006).
The ‘vital rates’ approach models fitness components, such as
survival, growth rate and reproduction, directly as functions
of trait 9 environment interactions, because the effect of
traits on fitness should depend on the environment (Laughlin
& Messier 2015).
The likelihood approach assumes that average trait values

in a community are biased towards the optimum trait value
for that environment because they are the most frequent trait
value in the community. Several trait-based models

(e.g. CATS, Traitspace, fourth corner and RLQ analyses,
Trait Driver Theory) rely on central tendencies of traits at the
community level, in some form or another, for understanding
the importance of traits in community assembly (Shipley et al.
2011; Laughlin et al. 2012; Dray et al. 2014; Enquist et al.
2015; Warton et al. 2015). If a sample of CWM traits is sig-
nificantly correlated with an environmental gradient, then the
logical interpretation of this pattern is that the trait has adap-
tive value along that gradient (Ackerly 2003). If a trait value
is more common (i.e. statistically likely) in one environment
than another, then species that possess this trait value should
exhibit high fitness in that environment (Fig. 1a).
Observed shifts in mean trait values along environmental

gradients are interpreted as reflections of physiological trade-
offs that drive environmental filtering of regional species pools
(Cornwell & Ackerly 2009; Shipley et al. 2011; Enquist et al.
2015). Examples abound where CWM traits vary predictably
along gradients of temperature, precipitation, soil fertility and
disturbance (Cornwell & Ackerly 2009; Sonnier et al. 2010;
Fortunel et al. 2014; Jager et al. 2015; Ames et al. 2016).
These relationships can be useful when the aim is to predict
the distribution of species and traits across broad spatial
scales (Asner et al. 2017). However, CWM trait–environment
correlations can only be used to explain the value of the trait
for fitness when fitness components (i.e. demographic rates)
are driven by trait 9 environment interactions (Fig. 1b, and
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see Fig. S1). In other words, the effect of traits on fitness must
depend on the environmental context. There are few strong
empirical tests of this assumption (Shipley et al. 2016). Mus-
carella & Uriarte (2016) found mixed evidence for the
assumption that CWM traits reflect optimum trait values and
highlighted the need to analyse demographic data to deter-
mine whether CWM trait values in a community reflect the
optimum trait value for a given environment.
The likelihood approach is attractive because of its low data

requirements and broad applicability to many datasets, but it
has four important weaknesses. First and foremost, trait–envi-
ronment correlations do not measure fitness components
directly (Laughlin & Messier 2015). Second, CWM trait–envi-
ronment relationships could be biased if they are driven by a
single dominant species or a large-statured species (Legendre
et al. 1997; Grime 1998). Small-statured species may be well-
adapted to the conditions, but because their low abundances
contribute little to the CWM trait value, their fitness is dis-
counted by such an analysis. Third, species composition is
dynamic (Adler et al. 2006). The dominant trait value in a
community at a snapshot in time could be the product of
environmental conditions in the past or recent disturbance
(Blonder et al. 2017), and it could be influenced by dispersal
limitation (Ozinga et al. 2005). Fourth, the likelihood
approach assumes that the fitness function is strictly uni-
modal, that is, that there is only one optimum trait value for
an environment (Muscarella & Uriarte 2016). The comple-
mentary coexistence of functionally diverse species (Hooper
1998) and the observation of rugged fitness landscapes (Poel-
wijk et al. 2007) raises doubts about a single optimum trait
value. Given these weaknesses, can we assume that CWM

trait–environment correlations are robust proxies for the
adaptive value of traits?
Our objective was to conduct a rigorous test of the wide-

spread assumption that CWM trait–environment correlations
reflect the adaptive value of functional traits. Fitness, as mea-
sured by lifelong reproductive output, is difficult to quantify.
Here, we focus on survival, a critical vital rate for perennial
herbs (Adler et al. 2014). There are four possible outcomes
when comparing interpretations of statistical analyses using
the likelihood and vital rates approaches (Table S1). When
the likelihood approach shows no CWM trait–environment
correlations, and trait 9 environment interactions do not sig-
nificantly affect vital rates, then both approaches agree that
the trait has no adaptive value (option #1). When there is no
CWM trait–environment correlation but the trait 9 environ-
ment interactions affect vital rates, then the trait may have
adaptive value along the gradient, but the CWM traits are
being driven by other factors that vary spatially or temporally
(option #2). In contrast, when there is a CWM trait–environ-
ment correlation but no trait 9 environment interaction
affecting vital rates, then the trait could be influencing a dif-
ferent fitness component, such as growth or reproduction
(Visser et al. 2016), or the CWM trait may be generated by a
single large or dominant species (option #3). Finally, when
the likelihood approach shows strong CWM trait–environ-
ment correlations and when trait 9 environment interactions
significantly affect vital rates (and agree in the direction of the
relationships), then both approaches provide evidence that the
trait has adaptive value (option #4).
The concordance between the likelihood and vital rates

approaches has never been directly tested, possibly because of
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Figure 1 (a) The ‘likelihood’ approach assesses the correlation between community-weighted mean (CWM) traits and environmental gradients. (b) The

‘vital rates’ approach models fitness components, that is, vital rates such as survival and growth rate, directly as functions of species-level

trait 9 environment interactions. If the likelihood approach is an accurate assessment of the adaptive value of traits, then fitness components must be

functions of trait 9 environment interactions. For example, (a) if a CWM trait is negatively correlated with an environmental gradient, then (b) high

values of that trait will only confer high fitness at the low end of the environmental gradient, leading to an observed interaction between the trait and

environment that affects fitness. The presence of a saddle in panel B at intermediate trait values denotes a switch in sign of the slope of the trait–vital rate
relationship; see the discussion in Supplementary Information and Fig. S1 for details. (c) The strength of the linear interaction can be assessed by viewing

how the sign of the slope of the trait–vital rate relationship, that is, the first partial derivative (o=oT) of the model, changes along the environmental

gradient. In this theoretical example, the slope switches from positive to negative along the environmental gradient; note how it is consistent with the sign

of the slope in panel A.
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the large data requirements that are needed to do so. We have
overcome this limitation by analysing a long-term (10-year)
dataset from northern Arizona in which we estimated CWM
traits and the relationship between traits and survival across
46 perennial plant species in permanent plots along strong
orthogonal gradients in soil properties. Specifically, we tested
the hypothesis that CWM trait–environment correlations are
generated by trait 9 environment interactions affecting sur-
vival. We found that the effect of traits on survival depended
on the environment, but that CWM trait–environment corre-
lations are unreliable estimates of how functional traits influ-
ence survival along environmental gradients.

METHODS

Study system and approach

This study was conducted within a 700-km2 landscape domi-
nated by ponderosa pine forest near Flagstaff, Arizona
(35.19°N, 111.65°W), on the Coconino National Forest
between the elevations of 2000–2500 m. The mean annual pre-
cipitation of Flagstaff is 565 mm and the mean annual tem-
perature is 7.7 °C. For this analysis, we used 89 permanent
1 � m2 chart quadrats mapped between 2003 and 2012 that
span a range of soil types developed from basalt, limestone
and sandstone parent materials (Laughlin et al. 2011).
We tested our hypothesis in two steps: we fit CWM traits as

functions of soil gradients and then modelled survival proba-
bility using generalised linear mixed models (GLMM) to
determine if survival was driven by trait 9 soil interactions
(Fig. 1). Our primary interest was to estimate the strength of
the interactions between each of three traits and the two soil
properties to compare with the CWM trait–environment
regression models. Our survival models accounted for the
many other factors known to influence individual plant sur-
vival: plant size, interannual climatic variation and local
neighbourhood competition (Lasky et al. 2014; Chu & Adler
2015; Kunstler et al. 2016).

Demographic data

One of the few ways to determine demographic parameters
for perennial plant species is by the long-term mapping of
individuals on permanent plots (Clements 1907). This tech-
nique allows both the location and basal area of individuals
to be tracked through time. We compiled survivorship data
for 13 822 individuals representing 46 herbaceous perennial
species (10 graminoids and 36 forbs). Species were mapped as
either points or polygons depending on growth form. We
tracked individuals through time based on their spatial loca-
tion in the quadrats (Lauenroth & Adler 2008).
For species mapped as points, survivors are classified as any

genet identified in year t + 1, which is < 5 cm from a con-
specific in year t. If in the current year, more than one indi-
vidual is within the neighbourhood of a ‘parent’ plant, then
all individuals inherit that same identity (Lauenroth & Adler
2008). Second, a recruit is defined as a genet in year t + 1
which is > 5 cm from any conspecific in year t. For species
mapped as polygons, the tracking rules are based on areas of

overlapping polygons, as opposed to distances between points.
At time t, a 5-cm buffer is added to all polygons of a given
species. At time t + 1, if an individual does not overlap with
any polygon from the previous year, it is labelled a recruit.
Otherwise, it acquires the identity of the individual with which
it shares the greatest overlap (Lauenroth & Adler 2008). This
allows for individual plants to fragment and coalesce over
time. These assumptions and tracking rules are appropriate
for the ponderosa pine-bunchgrass ecosystem since most
herbaceous species in our quadrats have the potential for clo-
nal growth. A distance of 5 cm was chosen to account for
both mapper error and the potential for vegetative growth
(Lauenroth & Adler 2008). Analyses of plant demography
and coexistence have been shown to be insensitive to this buf-
fer distance (Chu & Adler 2015). Complete details and
assumptions of the algorithms are detailed in Lauenroth &
Adler (2008).
Forbs and graminoids were mapped differently, so we used

the following procedure to convert points and polygons into
the same ‘currency’ of abundance, that is, foliar cover. Mea-
surements of basal cover and foliar cover were made on most
of these species in an independent dataset in the same region
(Moore et al. 2006). We developed lifeform-level (i.e. grami-
noids, forbs and ground-rosette forbs) and species-level regres-
sion models to predict foliar cover from basal cover (see
Table S2 and Fig. S2 for details). These predictions of foliar
cover produced the correct average ratio of 2 : 1 graminoid-
to-forb cover (Moore et al. 2006).
We used a radius of 15 cm to define the local neighbourhood

surrounding each focal plant because the strength of plant–
plant interactions was found to decrease rapidly beyond a
radius of 10 cm in western U.S. rangelands (Chu & Adler
2015). We used a slightly larger radius than this in order to
include more potential competitors, and to limit edge effects,
we excluded all individuals within 5 cm of the quadrat border.

Environmental conditions

We analysed a variety of soil properties to select two uncorre-
lated soil properties that reflect independent edaphic gradients
(see Supplementary Information for detailed methods). We
selected sand content and soil C : N ratio because they were
orthogonal variables that reflect different aspects of the soil
environment (Fig. S3). Soil with high sand content was higher
in pH and tended to be warmer and drier than soil with low
sand content. C : N ratio was orthogonal to sand content,
and soil with low C : N ratios has greater available nitrogen.
We computed average annual temperatures and total annual

water-years using data obtained from the National Climatic
Data Center (www.ncdc.noaa.gov) for the Flagstaff, Arizona
region. Gaps in the data were supplemented with local
weather stations. Water-years were defined as the total precip-
itation that fell from October of previous year through
September of current year. We compared models to preselect
whether to use the current or previous year’s precipitation
and temperature. Based on AIC, we chose the current year’s
temperature and the previous year’s water-year (hereafter, pre-
cipitation) because they were superior predictors of plant sur-
vival (Table S3).
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Functional traits

We used three functional traits thought to influence plant per-
formance along gradients of soil properties and climatic con-
ditions: specific leaf area (SLA), specific root length (SRL)
and flowering phenology (see Supplementary Information for
detailed methods). These traits loaded on distinct axes of vari-
ation and so reflect different dimensions of plant function in
this flora (Laughlin et al. 2010). SLA reflects a trade-off
between performance and persistence where leaves with high
SLA have short lifespans and high rates of gas exchange
(Poorter et al. 2009). Species with high SLA are thought to
exhibit superior performance in soils that are rich in water
and mineral nutrients (Jager et al. 2015; Maire et al. 2015).
SRL reflects the foraging potential of the root per unit carbon
investment. Species with high SRL are thought to be superior
foragers when soil nutrients, especially phosphorus, are lim-
ited because they are better able to proliferate into nutrient-
rich patches of soil (Lalibert�e et al. 2015). Flowering date
reflects phenological differences that may reflect tolerance of
water limitation, where early flowering ‘cool-season’ species
tolerate cooler conditions and wetter soils, and late-flowering
‘warm-season’ species tolerate warmer conditions and drier
soils.

Data analysis

First, we computed quadrat-level CWM trait values, which
represent the average value of a given trait within a quadrat
weighted by the relative abundance of each species. CWM
traits were calculated for each trait in each of the k quadrats
as CWMk ¼

PS
i¼1 tipik, where ti is the mean trait of species i,

pik is the relative foliar cover of species i in plot k, and S is
the number of species in the plot. We computed CWM traits
for each quadrat in each year, but these average trait values
did not change appreciably throughout the study period so we
used the average CWM for each quadrat across all years. We
first fit multiple regression models that tested for interaction
effects between soil sand content and C : N ratio, but no
interactions among soil properties were detected (P > 0.05).
We also tested for nonlinear relationships by including a
quadratic predictor variable, but there was no evidence of
nonlinear relationships (P > 0.05). Therefore, we illustrate the
simple linear relationships in bivariate scatterplots.
Second, survival was modelled using a logit link function

within a GLMM of the general form:

logit survivalð Þ ¼ aþ csp þ sizebsp þ dquad þ syr þ sizeb1þ
traitb2 þ CNratiob3 þ sandb4 þ precipb5
þ tempb6 þ intraCoverb7 þ interCoverb8
þ trait� CNratiob9 þ trait� sand b10
þ trait� precip b11 þ trait� temp b12
þ trait� intraCover b13 þ trait

� interCover b14

To maintain model tractability, each model tested the
effects of a single trait and its interactions; we did not test for
higher-ordered multi-trait interactions. This model included

three random effects, eight main effects (not including the glo-
bal intercept a) and six interactions. We modelled species as a
random intercept (csp) to account for species-level differences
in survival that were unrelated to the traits. These random
species effects were allowed to exhibit random slopes (bspÞwith
respect to plant size because the effect of size on survival can
differ among species (Fig. S4). We modelled quadrats as ran-
dom intercepts (dquad) to account for spatial autocorrelation
(Fig. S5), and we modelled years as random intercepts (syrÞ to
account for annual variation in survival unrelated to interan-
nual climate (Fig. S6).
Two conditions had to be satisfied in order for us to con-

sider a trait 9 environment interaction to be ‘strong’. First,
the interaction terms in the GLMM had to be statistically sig-
nificant (a = 0.05). Second, the slope of the relationship
between the trait and logit survival must switch signs over the
length of the environmental gradient (Fig. 1c). This was com-
puted as the first partial derivative of the fitted model (see
Supplementary Information). We consider statistically signifi-
cant interactions as ‘weak’ if the slope of the trait–logit sur-
vival relationship does not switch signs along the
environmental gradient, or as ‘strong’ if the slope does switch
signs. This is important because ‘strong’ interactions indicate
that there is a change in the rank order of fitness across the
gradient, which is required for there to be a predictable
change in CWM trait values across the gradient (Fig. 1).
We simultaneously accounted for other factors known to

affect survival. We used foliar plant cover of the individual to
account for plant size. The previous year’s precipitation and
the current year’s temperature and their interactions with the
trait of the focal plant were used to account for climatic
effects (Table S3). We partitioned the effects of local neigh-
bourhood competition into four different effects. First, the
cover of conspecifics accounts for the main effect of
intraspecific competition on focal plant survival. Second, the
interaction between conspecific cover and the trait of the focal
plant accounts for how the trait mediates the effect of
intraspecific competition on the survival of the focal plant.
Third, the cover of heterospecifics accounts for the main effect
of interspecific competition on focal plant survival, and
fourth, we account for the interaction between heterospecific
cover and the trait of the focal plant (Kunstler et al. 2016).
We used the ‘glmer’ function in the ‘lme4’ package in R to

fit these models (Bates et al. 2015). We computed the marginal
R2 (hereafter, R2

m, the proportion of variance explained by the
fixed effects) and the conditional R2 (hereafter, R2

c, the propor-
tion of variance explained by both fixed and random effects)
using the ‘piecewiseSEM’ package in R (Lefcheck 2015).

RESULTS

Comparison of likelihood and vital rates approaches

CWM-specific leaf area (SLA) was not related to either sand
content (R2 < 0.01, Fig. 2a) or soil C : N ratio (R2 = 0.01,
Fig. 2d). In the survival analysis, the interaction between SLA
and sand content was not significant (P = 0.11, Table 1,
Fig. 2b,c), so the vital rates approach agreed with the likeli-
hood approach with respect to SLA and sand content

© 2018 John Wiley & Sons Ltd/CNRS
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Figure 2 Comparison of likelihood and vital rates approaches for examining the adaptive value of specific leaf area (SLA) along two soil property

gradients. The first column illustrates the results of the likelihood approach, where community-weighted mean (CWM) SLA was regressed on each soil

property across the 89 quadrats (a,d). The second column illustrates the results of the vital rates approach, where the GLMM fitted predictions of survival

probability (curved surfaces) illustrate the interactions between the trait and each soil property (b,e). The third column illustrates how the slope of the

trait–logit survival relationship changes along each soil property gradient, and the dotted line indicates a slope of zero (c,f). All variables have been scaled

to unit variance.

Table 1 GLMM standardised coefficients and their significance, and model fit statistics for each of the three trait-based models

Term

Specific leaf area Specific root length Flowering date

Coefficient P-value Coefficient P-value Coefficient P-value

Intercept �0.472 0.0640 �0.600 0.0206 �0.513 0.0404

Trait �0.202 0.2015 �0.213 0.1092 0.066 0.6857

Precipitation (previous year) �0.014 0.9430 �0.006 0.9734 �0.001 0.9956

Temperature (current year) 0.013 0.9459 0.007 0.9713 �0.011 0.9540

Sand content �0.195 < 0.0001 �0.220 < 0.0001 �0.184 < 0.0001

Soil C : N ratio 0.097 0.0351 0.123 0.0101 0.131 0.0067

Local intraspecific cover �0.502 < 0.0001 �0.469 < 0.0001 �0.458 < 0.0001

Local interspecific cover �0.107 < 0.0001 �0.104 < 0.0001 �0.100 < 0.0001

Focal plant size 0.777 < 0.0001 0.813 < 0.0001 0.816 < 0.0001

Trait 9 Precipitation 0.040 0.0031 �0.095 < 0.0001 �0.087 < 0.0001

Trait 9 Temperature 0.048 0.0009 0.056 < 0.0001 0.114 < 0.0001

Trait 9 Sand content �0.029 0.1381 0.086 < 0.0001 0.085 < 0.0001

Trait 9 Soil C : N ratio �0.079 < 0.0001 �0.036 0.0586 0.015 0.3698

Trait 9 Intraspecific cover 0.146 < 0.0001 �0.037 0.0516 0.068 0.0001

Trait 9 Interspecific cover �0.033 0.0208 �0.068 0.0001 �0.025 0.0974

Model fit statistics

R2
marginal 0.166 0.164 0.161

R2
conditional 0.428 0.422 0.423

Significant terms are in bold.
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(outcome #1 in Table S1). However, there was a significant
interaction between SLA and soil C : N ratio (Fig. 2e,
Table 1). In high C : N ratio soil, survival was highest for
species with low SLA and lowest for species with high SLA.
The slope of the relationship between SLA and logit survival
switched from positive to negative along the soil C : N ratio
gradient (Fig. 2f); therefore, the vital rates and likelihood
approaches were inconsistent with respect to the effect of SLA
on survival along a soil C : N ratio gradient (outcome #2 in
Table S1).
CWM-specific root length (SRL) was positively related to

sand content (R2 = 0.33, Fig. 3a) and negatively related to soil
C : N ratio (R2 = 0.11, Fig. 3d). In the survival analysis, there
was a significant interaction between SRL and soil sand con-
tent, such that survival was highest for species with low SRL
in soil with low sand content (Fig. 3b, Table 1). However, the
slope of the relationship between SRL and logit survival did
not switch from negative to positive across the sand content
gradient, indicating a relatively weak interaction (Fig. 3c);
therefore, the interpretations of the likelihood and vital rates
results were in disagreement (outcome #3 in Table S1). The
interaction between SRL and soil C : N ratio was not

significant (Fig. 3e, Table 1), also conflicting with the results
of the likelihood approach (outcome #3 in Table S1).
CWM flowering date was positively related to sand content

(R2 = 0.21, Fig. 4a) and negatively related to soil C : N ratio
(R2 = 0.10, Fig. 4d). The survival analysis showed a signifi-
cant interaction between flowering date and sand content,
such that survival was higher for species with later flowering
dates in sandy soil and lower for species with early flowering
dates in sandy soil (Fig. 4b, Table 1). The slope of the rela-
tionship between flowering date and logit survival switched
from negative to positive along the sand content gradient
(Fig. 4c). Therefore, with respect to flowering date and sand
content, the likelihood and vital rates approaches were in
agreement (outcome #4 in Table S1). However, the interaction
between flowering date and soil C : N ratio was not signifi-
cant (Figs. 4e,f, Table 1), conflicting with the results of the
likelihood approach (outcome #3 in Table S1).

Other factors affecting survival

No trait exhibited significant main effects on survival
(Table 1, Fig. 5a,d,g). In other words, the effects of traits on
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Figure 3 Comparison of likelihood and vital rates approaches for examining the adaptive value of specific root length (SRL) along two soil property

gradients. The first column illustrates the results of the likelihood approach, where community-weighted mean (CWM) SRL was regressed on each soil

property across the 89 quadrats (a,d). The second column illustrates the results of the vital rates approach, where the GLMM-fitted predictions of survival

probability (curved surfaces) illustrate the interactions between the trait and each soil property (b,e). The third column illustrates how the slope of the

trait–logit survival relationship changes along each soil property gradient, and the dotted line indicates a slope of zero (c,f). All variables have been scaled

to unit variance.

© 2018 John Wiley & Sons Ltd/CNRS

416 D. C. Laughlin et al. Letter



survival always depended on the abiotic and biotic context.
SLA of the focal plant interacted with intraspecific cover,
such that species with low SLA had higher survival where
neighbourhood competition with conspecifics was low and
species with high SLA exhibited higher survival where cover
of conspecifics was high (Fig. 5b). SLA weakly interacted with
temperature and precipitation, such that species with low SLA
had the highest survival in cold and dry years (Fig. 5c,d).
SRL did not interact with intraspecific cover (Fig. 5f). SRL
weakly interacted with temperature and precipitation such
that low SRL was associated with higher survival at low tem-
peratures (Fig. 5g) and high precipitation in the previous year
(Fig. 5h). Flowering date interacted weakly with intraspecific
cover (Fig. 5j), but interacted strongly with interannual cli-
mate. Survival was highest for species with late-flowering
dates in hot years with dry previous years, whereas survival
was highest for species with early-flowering dates in cool years
with wet previous years (Fig. 5k,l).
Among all the trait-independent main effects, focal plant

size was the most important predictor of survival (Table 1).
Large plants exhibited significantly higher survival probabili-
ties (Fig. S7a), and this size dependence differed among spe-
cies (Fig. S4). Intraspecific and interspecific cover of the local
neighbourhood surrounding the focal plants were each

negatively related to survival, but intraspecific cover exhibited
the stronger effect (Fig. S7b,c). Neither precipitation in the
previous year nor temperature of the current year was signifi-
cantly related to survival (Fig. S7d,e). Sand content was nega-
tively related to survival, and soil C : N content was
positively related to survival (Fig. S7f,g).
The fixed effects in the survival models explained approxi-

mately 16% of total variation in survival (R2
m = 0.16), leaving

approximately 26% of the variation accounted for by the ran-
dom effects (R2

c = 0.42). Random species effects (standard
deviation [SD] for the random intercept = 0.97) accounted
for more variation than random quadrat effects (SD for the
random intercept = 0.12) or random year effects (SD for the
random intercept = 0.36) (Figs. S4, S5, S6).

DISCUSSION

By synthesising data on long-term demographic rates and
functional traits across a strong gradient in soil properties, we
conducted a rigorous test of the assumption that CWM trait–
environment correlations are accurate reflections of the adap-
tive value of traits. After accounting for focal plant size,
climatic effects and local neighbourhood competitive interac-
tions (Chu & Adler 2015; Kraft et al. 2015a), we have shown
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Figure 4 Comparison of likelihood and vital rates approaches for examining the adaptive value of flowering date along two soil property gradients. The

first column illustrates the results of the likelihood approach, where community-weighted mean (CWM) flowering date was regressed on each soil property

across the 89 quadrats (a,d). The second column illustrates the results of the vital rates approach, where the GLMM fitted predictions of survival

probability (curved surfaces) illustrate the interactions between the trait and each soil property (b,e). The third column illustrates how the slope of the

trait–logit survival relationship changes along each soil property gradient, and the dotted line indicates a slope of zero (c,f). All variables have been scaled

to unit variance.

© 2018 John Wiley & Sons Ltd/CNRS

Letter The adaptive value of functional traits 417



that the effects of traits on survival depends on the environ-
mental conditions. However, we observed inconsistencies
between the likelihood and vital rates approaches (Laughlin &
Messier 2015), contradicting the hypothesis that CWM trait–
environment correlations are generated by trait 9 environ-
ment interactions affecting survival. If the likelihood and vital
rates approaches were consistent, then we should have only
observed outcomes #1 and #4 as listed in Table S1, but we
observed all four possible outcomes. We conclude that CWM
trait–environment correlations are unreliable estimates of how
traits mediate survival probabilities across environmental gra-
dients. CWM traits are often used to estimate optimum trait
values, but processes such as environmental change, distur-
bance and dispersal limitation can shift CWM traits from an
optimum value. Linking vital rates to trait 9 environment
interactions will advance our understanding of trait-based
habitat filtering and will improve our ability to accurately pre-
dict how species and communities respond to environmental
gradients.
No trait exhibited independent main effects on survival

because the adaptive value of traits depended on the

environmental context. For example, variation in SLA is
underpinned by a physiological trade-off between metabolic
rate and leaf longevity (Poorter et al. 2009). The vital rates
analysis supported the prediction from leaf economics the-
ory that conservative phenotypes would have high survival
in resource-poor environments (Maire et al. 2015): species
with low SLA had higher survival in high C : N ratio soil
and species with high SLA had higher survival in low
C : N ratio soil (Fig. 2f). However, the likelihood approach
failed to detect the positive effect of low SLA on survival
in high C : N ratio soil because there was no correlation
between CWM SLA and soil C : N ratio. This suggests that
other unmeasured factors, such as grazing or other distur-
bances (Strahan et al. 2015) or dispersal limitation (Ozinga
et al. 2005), have shifted the CWM trait values in each plot
away from any optimal value (Table S1). In other words, a
CWM trait–environment correlation is the result of multiple
processes, and we urge caution when interpreting these cor-
relations as evidence for the adaptive value of a trait in the
absence of a known physiological trade-off that can explain
the correlation.
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Figure 5 Main effects of the focal plant trait (first column on left) and trait 9 environment interaction effects (three columns on right) estimated in the

GLMMs. For the nonsignificant main effects, lines represent model fitted predictions and shading represents 95% confidence intervals. For the interaction

effects, curved surfaces represent the GLMM predictions as functions of the interactions between each trait and environmental variable. The P-values

indicate the significance of the interaction terms; ‘weak’ interactions did not exhibit trait–logit survival relationships that switched signs along the length of
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© 2018 John Wiley & Sons Ltd/CNRS

418 D. C. Laughlin et al. Letter



The predictive power of the survival models was limited
(marginal R2 < 0.20), suggesting that other drivers of survival
were missing from the models. The empirical interaction
effects were rarely as strong as theoretical expectations
(Fig. 1), and many significant interaction terms were not con-
sidered to be ‘strong’ because the slope of the trait and logit
survival relationship did not switch signs along the length of
the environmental gradient. The predictive power of these
models could be low because survival is influenced by complex
trait combinations expressed at the level of the whole pheno-
type. For example, low SRL may confer higher survival in
low sand content soil, but high SRL leads to low survival
probabilities across the entire sand content gradient (Fig. 3);
however, species with high SRL might exhibit higher proba-
bilities of survival in sandy soil if they also exhibit later flow-
ering times (Fig. 4). Explicit tests of the effects of multiple
trait combinations via higher-ordered trait 9 trait 9 environ-
ment interactions are an important next step towards under-
standing the effects of whole-organism phenotypes on fitness;
however, expanding models to higher-ordered interactions will
exponentially increase the number of model parameters and
will require sufficient data for accurate estimation.
Discrepancies between the likelihood and vital rates may

occur if a trait is influencing another fitness component other
than survival. There was surprisingly no detectable interaction
between SRL and soil C : N ratio despite the CWM trait–envi-
ronment correlation between these two variables. Similarly,
there was no detectable flowering date 9 soil C : N ratio inter-
action despite the CWM trait–environment correlation between
these two variables. These discrepancies could possibly be
explained if SRL and flowering date were influencing growth
rates or reproduction (Table S1). For example, SRL is posi-
tively related to relative growth rate (Comas & Eissenstat 2004;
Kramer-Walter et al. 2016), and phenological differences
among species could affect reproductive success in changing cli-
mates (Galen & Stanton 1991; Cleland et al. 2007).
Temporal dynamics in these communities were driven by

two main factors: local competitive interactions and interan-
nual climatic variability. Intraspecific competitive effects on
focal plant survival were much stronger than interspecific
competitive effects on survival because survival probability
approached zero in the presence of high abundances of the
same species (Fig. S7b). The traits of the focal plant moder-
ated the effects of competition on survival. For example,
herbaceous plant species with high SLA had higher survival
when competition with conspecifics was high, whereas species
with low SLA had higher survival in the absence of competi-
tion. This suggests that productive phenotypes are winners
when competition with conspecifics is most fierce.
Interannual variation in temperature and precipitation also

influenced plant survival, but phenological differences moder-
ated these survival responses. Specifically, species with later
flowering dates, which tend to be affiliated with a warm-season
strategy or the C4 photosynthetic pathway (Laughlin et al.
2010), had higher survival than species with early-flowering
dates following drought years. Late-flowering species had
higher survival in hot years and early-flowering species had
higher survival in cool years, suggesting that quantitative traits
can be used to forecast how species and communities will

respond to interannual climatic variation and changing climate
(Anderegg et al. 2016). Interannual climatic variation has been
shown to have a stabilising effect on species coexistence (Adler
et al. 2006), and phenotypic traits provide a generalisable pre-
dictor of how species respond to yearly climatic variation.
It could be argued that CWM trait–environment relationships

are better metrics of adaptation than demographic rates because
they are the integrated sum of many vital rates over a longer per-
iod of time. Moreover, CWM traits implicitly include the effects
of species interactions and other unmeasured processes. In con-
trast, survival probability and other fitness components may be
sensitive to factors such as disturbance that vary stochastically
over time and space. For this and other practical reasons, the
likelihood approach will likely remain a useful tool for generat-
ing predictions about species and community distributions in an
era of global change. CWM traits also have clearer effects on
ecosystem processes. However, if we assume that a CWM trait–
environment relationship reflects the adaptive value of a trait in
the absence of a known physiological trade-off, this could lead to
incorrect predictions of responses for other species in different
ecosystems. In other words, correlative patterns will most suc-
cessfully be used to make general predictions if the correlation is
underpinned by an evolutionary trade-off driven by a physiologi-
cal mechanism that influences vital rates.
Community-weighted mean traits are easy to compute but

difficult to interpret. We hope that our results motivate others
to undertake the challenging task of quantifying how the
effect of traits on individual and population-level fitness
depends on the environmental context. A phenotype may be
dominant because of higher survival, growth and/or reproduc-
tion (Adler et al. 2014), so if a trait affects survival differently
than it affects growth rates or reproduction (Visser et al.
2016), then effects on lifelong fitness are obscured. Future
work that estimates the effects of multiple trait combinations
on total fitness, by integrating all vital rates to estimate popu-
lation-level growth rates (k) using Integral Projection Models,
may provide much-needed insight into how phenotypes affect
fitness across environmental gradients.
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